1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
// Copyright (c) Facebook, Inc. and its affiliates // SPDX-License-Identifier: MIT OR Apache-2.0 #![forbid(unsafe_code)] //! This crate provides a way to extract format descriptions for Rust containers that //! implement the Serialize and/or Deserialize trait(s) of Serde. //! //! Format descriptions are useful in several ways: //! * Stored under version control, formats can be tested to prevent unintended modifications //! of binary serialization formats (e.g. by changing variant order). //! * Formats can be passed to [`serde-generate`](https://docs.rs/serde-generate) //! in order to generate class definitions and provide Serde-compatible binary //! serialization in other languages (C++, python, Java, etc). //! //! # Quick Start //! //! Very often, Serde traits are simply implemented using Serde derive macros. In this case, //! you may obtain format descriptions as follows: //! * call `trace_simple_type` on the desired top-level container definition(s), then //! * add a call to `trace_simple_type` for each `enum` type. (This will fix any `MissingVariants` error.) //! //! ```rust //! # use serde::Deserialize; //! # use serde_reflection::{Error, Samples, Tracer, TracerConfig}; //! #[derive(Deserialize)] //! struct Foo { //! bar: Bar, //! choice: Choice, //! } //! //! #[derive(Deserialize)] //! struct Bar(u64); //! //! #[derive(Deserialize)] //! enum Choice { A, B, C } //! //! # fn main() -> Result<(), Error> { //! // Start the tracing session. //! let mut tracer = Tracer::new(TracerConfig::default()); //! //! // Trace the desired top-level type(s). //! tracer.trace_simple_type::<Foo>()?; //! //! // Also trace each enum type separately to fix any `MissingVariants` error. //! tracer.trace_simple_type::<Choice>()?; //! //! // Obtain the registry of Serde formats and serialize it in YAML (for instance). //! let registry = tracer.registry()?; //! let data = serde_yaml::to_string(®istry).unwrap(); //! assert_eq!(&data, r#"--- //! Bar: //! NEWTYPESTRUCT: U64 //! Choice: //! ENUM: //! 0: //! A: UNIT //! 1: //! B: UNIT //! 2: //! C: UNIT //! Foo: //! STRUCT: //! - bar: //! TYPENAME: Bar //! - choice: //! TYPENAME: Choice //! "#); //! # Ok(()) //! # } //! ``` //! //! # Features and Limitations //! //! `serde_reflection` is meant to extract formats for Rust containers (i.e. structs and //! enums) with "reasonable" implementations of the Serde traits `Serialize` and //! `Deserialize`. //! //! Supported implementations include: //! //! * Plain derived implementations obtained with `#[derive(Serialize, Deserialize)]` for //! Rust containers in the Serde [data model](https://serde.rs/data-model.html) //! //! * Customized derived implementations using Serde attributes that are compatible with //! binary serialization formats, such as `#[serde(rename = "Name")]`. //! //! * Hand-written implementations of `Deserialize` that are more restrictive than the //! derived ones, provided that `trace_value` is used during tracing to provide sample //! values for all such constrained types (see the detailed example below). //! //! * Mutually recursive types provided that the first variant of each enum is //! recursion-free. (For instance, `enum List { None, Some(Box<List>)}`.) Note that each //! enum must be traced separately with `trace_type` to discover all the variants. //! //! Unsupported idioms include: //! //! * Containers sharing the same base name (e.g. `Foo`) but from different modules. (Work //! around: use `#[serde(rename = ..)]`) //! //! * Generic types instantiated multiple times in the same tracing session. (Work around: //! use the crate [`serde-name`](https://crates.io/crates/serde-name) and its adapters `SerializeNameAdapter` and `DeserializeNameAdapter`.) //! //! * Attributes that are not compatible with binary formats (e.g. `#[serde(flatten)]`, `#[serde(tag = ..)]`) //! //! * Tracing type aliases. (E.g. `type Pair = (u32, u64)` will not create an entry "Pair".) //! //! * Mutually recursive types for which picking the first variant of each enum does not //! terminate. (Work around: re-order the variants. For instance `enum List { //! Some(Box<List>), None}` must be rewritten `enum List { None, Some(Box<List>)}`.) //! //! # Troubleshooting //! //! The error type used in this crate provides a method `error.explanation()` to help with //! troubleshooting during format tracing. //! //! # Detailed Example //! //! In the following, more complete example, we extract the Serde formats of two containers //! `Name` and `Person` and demonstrate how to handle a custom implementation of `serde::Deserialize` //! for `Name`. //! //! ```rust //! # use serde::{Deserialize, Serialize}; //! use serde_reflection::{ContainerFormat, Error, Format, Samples, Tracer, TracerConfig}; //! //! #[derive(Serialize, PartialEq, Eq, Debug, Clone)] //! struct Name(String); //! // impl<'de> Deserialize<'de> for Name { ... } //! # impl<'de> Deserialize<'de> for Name { //! # fn deserialize<D>(deserializer: D) -> std::result::Result<Self, D::Error> //! # where //! # D: ::serde::Deserializer<'de>, //! # { //! # // Make sure to wrap our value in a container with the same name //! # // as the original type. //! # #[derive(Deserialize)] //! # #[serde(rename = "Name")] //! # struct InternalValue(String); //! # let value = InternalValue::deserialize(deserializer)?.0; //! # // Enforce some custom invariant //! # if value.len() >= 2 && value.chars().all(char::is_alphabetic) { //! # Ok(Name(value)) //! # } else { //! # Err(<D::Error as ::serde::de::Error>::custom(format!( //! # "Invalid name {}", //! # value //! # ))) //! # } //! # } //! # } //! //! #[derive(Serialize, Deserialize, PartialEq, Eq, Debug, Clone)] //! enum Person { //! NickName(Name), //! FullName { first: Name, last: Name }, //! } //! //! # fn main() -> Result<(), Error> { //! // Start a session to trace formats. //! let mut tracer = Tracer::new(TracerConfig::default()); //! // Create a store to hold samples of Rust values. //! let mut samples = Samples::new(); //! //! // For every type (here `Name`), if a user-defined implementation of `Deserialize` exists and //! // is known to perform custom validation checks, use `trace_value` first so that `samples` //! // contains a valid Rust value of this type. //! let bob = Name("Bob".into()); //! tracer.trace_value(&mut samples, &bob)?; //! assert!(samples.value("Name").is_some()); //! //! // Now, let's trace deserialization for the top-level type `Person`. //! // We pass a reference to `samples` so that sampled values are used for custom types. //! let (format, values) = tracer.trace_type::<Person>(&samples)?; //! assert_eq!(format, Format::TypeName("Person".into())); //! //! // As a byproduct, we have also obtained sample values of type `Person`. //! // We can see that the user-provided value `bob` was used consistently to pass //! // validation checks for `Name`. //! assert_eq!(values[0], Person::NickName(bob.clone())); //! assert_eq!(values[1], Person::FullName { first: bob.clone(), last: bob.clone() }); //! //! // We have no more top-level types to trace, so let's stop the tracing session and obtain //! // a final registry of containers. //! let registry = tracer.registry()?; //! //! // We have successfully extracted a format description of all Serde containers under `Person`. //! assert_eq!( //! registry.get("Name").unwrap(), //! &ContainerFormat::NewTypeStruct(Box::new(Format::Str)), //! ); //! match registry.get("Person").unwrap() { //! ContainerFormat::Enum(variants) => assert_eq!(variants.len(), 2), //! _ => panic!(), //! }; //! //! // Export the registry in YAML. //! let data = serde_yaml::to_string(®istry).unwrap(); //! assert_eq!(&data, r#"--- //! Name: //! NEWTYPESTRUCT: STR //! Person: //! ENUM: //! 0: //! NickName: //! NEWTYPE: //! TYPENAME: Name //! 1: //! FullName: //! STRUCT: //! - first: //! TYPENAME: Name //! - last: //! TYPENAME: Name //! "#); //! # Ok(()) //! # } //! ``` //! //! # Tracing Serialization with `trace_value` //! //! Tracing the serialization of a Rust value `v` consists of visiting the structural //! components of `v` in depth and recording Serde formats for all the visited types. //! //! ```rust //! # use serde_reflection::*; //! # use serde::Serialize; //! #[derive(Serialize)] //! struct FullName<'a> { //! first: &'a str, //! middle: Option<&'a str>, //! last: &'a str, //! } //! //! # fn main() -> Result<(), Error> { //! let mut tracer = Tracer::new(TracerConfig::default()); //! let mut samples = Samples::new(); //! tracer.trace_value(&mut samples, &FullName { first: "", middle: Some(""), last: "" })?; //! let registry = tracer.registry()?; //! match registry.get("FullName").unwrap() { //! ContainerFormat::Struct(fields) => assert_eq!(fields.len(), 3), //! _ => panic!(), //! }; //! # Ok(()) //! # } //! ``` //! //! This approach works well but it can only recover the formats of datatypes for which //! nontrivial samples have been provided: //! //! * In enums, only the variants explicitly covered by user samples will be recorded. //! //! * Providing a `None` value or an empty vector `[]` within a sample may result in //! formats that are partially unknown. //! //! ```rust //! # use serde_reflection::*; //! # use serde::Serialize; //! # #[derive(Serialize)] //! # struct FullName<'a> { //! # first: &'a str, //! # middle: Option<&'a str>, //! # last: &'a str, //! # } //! # fn main() -> Result<(), Error> { //! let mut tracer = Tracer::new(TracerConfig::default()); //! let mut samples = Samples::new(); //! tracer.trace_value(&mut samples, &FullName { first: "", middle: None, last: "" })?; //! assert_eq!(tracer.registry().unwrap_err(), Error::UnknownFormatInContainer("FullName".to_string())); //! # Ok(()) //! # } //! ``` //! //! For this reason, we introduce a complementary set of APIs to trace deserialization of types. //! //! # Tracing Deserialization with `trace_type<T>` //! //! Deserialization-tracing APIs take a type `T`, the current tracing state, and a //! reference to previously recorded samples as input. //! //! ## Core Algorithm and High-Level API //! //! The core algorithm `trace_type_once<T>` //! attempts to reconstruct a witness value of type `T` by exploring the graph of all the types //! occurring in the definition of `T`. At the same time, the algorithm records the //! formats of all the visited structs and enum variants. //! //! For the exploration to be able to terminate, the core algorithm `trace_type_once<T>` explores //! each possible recursion point only once (see paragraph below). //! In particular, if `T` is an enum, `trace_type_once<T>` discovers only one variant of `T` at a time. //! //! For this reason, the high-level API `trace_type<T>` //! will repeat calls to `trace_type_once<T>` until all the variants of `T` are known. //! Variant cases of `T` are explored in sequential order, starting with index `0`. //! //! ## Coverage Guarantees //! //! Under the assumptions listed below, a single call to `trace_type<T>` is guaranteed to //! record formats for all the types that `T` depends on. Besides, if `T` is an enum, it //! will record all the variants of `T`. //! //! (0) Container names must not collide. If this happens, consider using `#[serde(rename = "name")]`, //! or implementing serde traits manually. //! //! (1) The first variants of mutually recursive enums must be a "base case". That is, //! defaulting to the first variant for every enum type (along with `None` for option values //! and `[]` for sequences) must guarantee termination of depth-first traversals of the graph of type //! declarations. //! //! (2) If a type runs custom validation checks during deserialization, sample values must have been provided //! previously by calling `trace_value`. Besides, the corresponding registered formats //! must not contain unknown parts. //! //! ## Design Considerations //! //! Whenever we traverse the graph of type declarations using deserialization callbacks, the type //! system requires us to return valid Rust values of type `V::Value`, where `V` is the type of //! a given `visitor`. This contraint limits the way we can stop graph traversal to only a few cases. //! //! The first 4 cases are what we have called *possible recursion points* above: //! //! * while visiting an `Option<T>` for the second time, we choose to return the value `None` to stop; //! * while visiting an `Seq<T>` for the second time, we choose to return the empty sequence `[]`; //! * while visiting an `Map<K, V>` for the second time, we choose to return the empty map `{}`; //! * while visiting an `enum T` for the second time, we choose to return the first variant, i.e. //! a "base case" by assumption (1) above. //! //! In addition to the cases above, //! //! * while visiting a container, if the container's name is mapped to a recorded value, //! we MAY decide to use it. //! //! The default configuration `TracerConfig:default()` always picks the recorded value for a //! `NewTypeStruct` and never does in the other cases. //! //! For efficiency reasons, the current algorithm does not attempt to scan the variants of enums //! other than the parameter `T` of the main call `trace_type<T>`. As a consequence, each enum type must be //! traced separately. mod de; mod error; mod format; mod ser; mod trace; mod value; pub use error::{Error, Result}; pub use format::{ContainerFormat, Format, FormatHolder, Named, Variable, VariantFormat}; pub use trace::{Registry, Samples, Tracer, TracerConfig}; pub use value::Value;